

Enhancing Phytosanitary Systems for Healthy Plants, Safe & Sustainable Trade"

Sub-theme:

Pest Diagnostics in Phytosanitary

Systems

Title:

ON-FIELD DETECTION OF THE GENUS *PECTOBACTERIUM* AND *DICKEYA* CAUSING BLACK LEG IN TAITA TAVETA COUNTY, KENYA

Presented by:

Cyrus M. Micheni Bramwel Wanjala Dr. Ruth Amata – P.I

www.africa-cope.org

Introduction

- In Kenya, Potato (Solanum Tuberosum) is the second most important food crop after maize
- Contributes to 32% of overall dietary energy consumption
- Grown by 800,000 small-scale farmers
- Generating employment for an estimated 2.5 million people along the value chain

- Despite its importance potato yields are low at less than 20t/ha in Africa as compared to over 40t/ha in other continents e.g. N. America.
- Recently potato production has been hampered by several biotic constraints including brown rot caused by R. solanacearum and blackleg disease of potatoes
- Potato blackleg is caused by two bacteria in the genus *Pectobacterium spp* and *Dickeya spp*.
- In Kenya P. carotovorum subsp. carotovorum, P. carotovorum subsp. brasiliense, P. wasabiae and D. Dianthicola have been reported.

Symptoms

Tubers – soft rot lesions which are discolored, affected tissue becomes black and slimy

Transmission

- Primary source of bacteria is through potato seed
- Other sources Aerosols, running water, rain

Stem – Black coloration and/ or vascular browning

Problem Statement

- This disease is spread mainly through movement of asymptomatically infected tubers
- It could lead to introduction of causal pathogens into disease free regions resulting in new disease outbreaks
- There's need to determine status of this disease in potato growing counties such to explore possible disease free areas for clean seed production
- Research is needed to establish the after harvest pathogen infectivity period in affected fields and tolerant varieties for proper management of the disease

Justification

- Laboratory based detection tools that have been used routinely for the detection of these pathogens are time consuming
- Further, there is a risk of samples deterioration in cases where the testing facilities are far apart from the sampling point
- In addition, the current testing regime has a high turn around time due to lengthy sample processing time
- Simple, cost effective, accurate and rapid assays are needed for detection surveys, monitoring of the phytosanitary status of prebasic seed production and at ports of entry in quarantine or certification program

Evaluating the operability of on-site detection for the genus *Pectobacterium* and genus *Dickeya* using LAMP assay

Methodology

Survey and Detection	 Sample collection in Taita-Taveta County in January 2020 Disease detection using PCR 	
	Reproducibility	
LAMP	 Repeatability 	
validation in the Lab	Limit of detection (LOD)	
	Precision	
On-site	• Accuracy	
LAMP	 Range Validation/ Verification 	
validation		

Methodology

- Both *Dickeya spp* and *Pectobactrium spp* were identified from the survey. •
- D. dianthicola and D. solani; P. wasabiae and P. carotovorum subsp. brasilience
- LAMP assay was designed using genus primers to be able to pick all the species present ٠

LAMP primers	Sequence (5' - 3')					
	Genus <i>Dickeya</i>					
Oligonucleotide						
Primer	Sequence					
Mglc-F3	TCGCTATCGGCGGTAACC					
Mglc-B3	ACCACCGGCAAAAGACAC					
MgIC-FIP	GCCGGACAGCATATACACCCAAGGAAGCCGCCAAAGTGTC					
MgIC- BIP	CCTTCGGCGGTATGCTGGAAGCGATGGCGTCAAGTTCGTA					
MgIC-Loop	CGGTAGTGCCACTAACAACCTGG					
MgIC- Loop probe	56-FAM/ACGCTGAGGACCCGGATGCGAATGCGGATGCGGATGCCGATTTTCGGTAGTGCCACTAACAACCTG					
Quencher probe	TCGGCATCCGCATCCGCATCCGGGTCCTCAGCGT/3BHQ_1/					
	Genus Pectobacterium					
P4HA-F3	CATGAAACCCCGTTCCAGT					
Р4НА-ВЗ	AAGGCGTCAGAGGTCAGC					
P4HA -FIP	CGCCGTTACGTTCACGGTAGTTTATGGCGTAACAGCAGCATC					
P4HA-BIP	TTCCTTTAGCCTCCGGCAAAGTTCGTTACACATTCCCAGCC					
P4HA -Loop	GGAACTCATGGGCAAGCG					
P4HA- Loop probe	/56-FAM/ACGCTGAGGACCCGGATGCGAATGCGGATGCGGATGCCGAGGAACTCATGGGCAAGCG					
Quencher probe	TCGGCATCCGCATCCGCATCCGGGTCCTCAGCGT/3BHQ_1/					

SYMPTOMATOLOGY

Black coloration on stem

Stem lodging

Lack of tuber production

Leaf rolling and chlorosis

- A total of 8 farms were visited
- 20 tuber and 14 stem samples were tested for both pathogens

		Genus <i>Pectobacterium</i> +ve	Genus <i>Dickeya</i> +ve
Plant Part	Tuber	9	14
	Stem	6	8

- Earliest time to positivity for the genus Dickeya was 4.30 and 6.30 minutes for stem and tuber respectively
- Earliest time to positivity for genus Pectobacterium was 6.00 and 8.00 minutes for stems and tubers respectively.

30,000 -

25,000-

20,000 -

15,000 -

10,000 -

5,000-

-5,000

0

Fluorescence

Results cont'

Amplification

Genus Dickeya

00:10:00

00:05:00

00:15:00

Time (hh:mm:ss)

00:20:00

00:25:00

Amplification

Time (hh:mm:ss)

Well Number	Well Name(mm:ss)	Peak Value(mm:ss)	Well Number	Well Name(mm:ss)	Peak Value(mm:ss)
1	COX_T52	12:45	1	COX _ SAMP 1	08:15
2	NT		2	NT	
3	POSITIVE T52		3	Positive T52	
4	TVT1_TUBER	13:30	4	TVT1 - Tuber	10:15
5	TVT 1_ STEM	06:00	5	TVT 1 _ STEM	06:00
6	TVT 2_ TUBER	09:15	6	TVT 2_TUBER	08:15
7	TVT2_ STEM	04:30	7	TVT2_ STEM	06:00
8	TVT3_ TUBER	09:15	8	TVT3 _ TUBER	08:00

- TVT 1_ STEM

TVT2_STEM

---- NT

- LAMP assay offers a quick and sensitive on-site diagnostic tool for the detection of

Blackleg

- LAMP is highly specific and has an advantage over conventional PCR in that it utilises crude DNA for amplification
- LAMP is highly versatile tool in that it can be used on cultures, extracted DNA and crude extracts from the stem and tuber

Recommendations

- This robust and cost effective tool could be used by Phytosanitary agencies to;
- Conduct Routine surveillance for the detection of both genus *Dickeya* and *Pectobacterium*
- Inspect seed stock production farms to prevent unwanted introduction of Blackleg to farmer ii. fields
- Rapid testing at ports of entry III.
- Field testing on farmer fields ÍV.

Acknowledgements

Theme: "Enhancing Phytosanitary Systems for Healthy Plants, Safe & Sustainable Trade" www.africa-cope.org

For more information, please contact:

www.africa-cope.org www.kephis.org Facebook.com/3rd phytosanitary Conference 2020 Twitter: @3rdphytoconf

Theme: Enhancing Phytosanitary Systems for Healthy Plants, Safe & Sustainable Trade" www.africa-cope.org